Cost-effectiveness analysis of hepatitis A vaccination in Canada using a dynamic model

Andrea Anonychuk, MSc
Chris Bauch, PhD
Maggie Hong Chen, MSc
Bernard Duval, MD, MPH
Vladimir Gilca, MD
Murray Krahn, MD, MSc
Ba’ Pham, MSc
Arni S.R. Srinivasa Rao, PhD
Andrea C. Tricco, MSc
HAV epidemiology in Canada

- Hepatitis A virus (HAV) incidence is relatively low.
- Spread is primarily person-to-person (fecal-oral route) with very rare foodborne outbreaks.
 - Average incidence 1980-1994: 6.3/100,000/yr
 - Average incidence 1995-2003: 3.8/100,000/yr
- Risk factors include MSM, IDUs, travelers.
- Vaccination in Canada is targeted toward high-risk groups.
Hepatitis A epidemiology

- Average Canadian incidence 1980-94: 6.3/100,000/yr
- Average Canadian incidence 1995-03: 3.8/100,000/yr

Source: Health Canada, CDC
Hepatitis A epidemiology

Source: Pham et al 2005
Research Rationale and Approach

- The cost-effectiveness and health outcomes of universal vaccination relative to targeted vaccination, in a low incidence country, are not currently known.

- Research Questions:
 - What are the expected health outcomes under universal hepatitis A vaccination in Canada?
 - Which universal vaccination schedules are the most cost-effective?

- We carried out a cost-utility analysis comparing universal vaccination to continuing the targeted policy.
Cost-utility methodology

- Assesses value for money.
- **Cost-effectiveness ratio:**
 increase in costs / gain in health units
- **Net Health Benefits, in health units:**
 \[(\text{gain in health}) - \frac{\text{(increase in costs)}}{\lambda}\]
- **Net Health Benefits, in monetary units:**
 \[\lambda(\text{gain in health}) - \text{(increase in costs)}\]

\[\lambda = $50,000/QALY\]
Cost-utility methodology

- Costs measured in 2005 Canadian dollars.
- Both **payer** and **societal** perspectives used
 - Payer = costs to Ministry of Health
 - Societal = MOH costs + time costs + private sector costs.
- Health measured in QALYs = Quality Adjusted Life Years.
QALY and Utilities

- Health has dimensions of **quality** and **quantity**
- Utility is
 - Used to weight length of life;
 - A measure of patient preference for standardized health states;
 - Measured on a 0 to 1 scale.
- Example:
 - Life expectancy of 5 years, utility of 0.5 means 2.5 QALYs are accumulated.
Methods for collecting costing data

- A systematic review of data on Hepatitis A outcomes and costs was performed.
- Canadian data were used whenever possible.
- Expert opinion and consensus used if no data available.
Vaccination Costs

- Costs of vaccination from the ministry perspective included:
 - Cost of vaccine (varied depending on strategy)
 - Cost of administration (ditto)
 - Cost of adverse events
- Societal costs included
 - Time costs due to getting vaccinated
 - Private sector vaccination
- Both proposed and current strategies were costed in this way.
Infection Costs

- Costs of infection from the ministry perspective included:
 - Physician visit
 - Outpatient clinic visits
 - Hospitalization
 - Diagnostic testing
 - Liver transplants
 - Public health interventions

- Additional infection costs from the societal perspective included:
 - Time costs (lost time at work due to acute infection and convalescence)

- Did not include home care or long-term care costs.
Summary of strategies considered, and their costs

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
<th>Cost per person vaccinated</th>
</tr>
</thead>
</table>
| Current policy | High-risk groups only | Ministry: $81
 | | | Society: $212 |
| 4+9 | One dose at age 4 in a clinic with other scheduled vaccines. One dose at age 9 in a school setting by replacing a single HB vaccine dose with a combined HA/HB vaccine dose. Current policy is phased out in unvaccinated cohorts. | Ministry: $42.57
 | | | Society: $43.17 |
| 9+9 | Two doses at age 9 in a school setting by replacing HB vaccine with combined HA/HB vaccine. Current policy is phased out in unvaccinated cohorts. | Ministry: $18.12
 | | | Society: $18.72 |
Summary of infection costs

<table>
<thead>
<tr>
<th>Age Class</th>
<th>Direct Costs (ministry)</th>
<th>Time Costs</th>
<th>Direct + time costs (society)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>$ 1,235</td>
<td>$ 598</td>
<td>$ 1,833</td>
</tr>
<tr>
<td>5-9</td>
<td>$ 1,235</td>
<td>$ 665</td>
<td>$ 1,900</td>
</tr>
<tr>
<td>10-19</td>
<td>$ 1,140</td>
<td>$ 729</td>
<td>$ 1,869</td>
</tr>
<tr>
<td>20-29</td>
<td>$ 1,163</td>
<td>$ 569</td>
<td>$ 1,732</td>
</tr>
<tr>
<td>30-39</td>
<td>$ 1,537</td>
<td>$ 1,446</td>
<td>$ 2,983</td>
</tr>
<tr>
<td>40-59</td>
<td>$ 1,923</td>
<td>$ 4,341</td>
<td>$ 6,264</td>
</tr>
<tr>
<td>60+</td>
<td>$ 1,556</td>
<td>$ 2,080</td>
<td>$ 3,636</td>
</tr>
</tbody>
</table>
Need for dynamic model

- We also need to estimate how many cases and deaths would be averted by universal vaccination.

- Conventional analyses use **cohort models** which cannot capture herd immunity effects of vaccination.

- Instead we use **dynamic models** which capture herd immunity by modelling transmission mechanisms via computer simulation.
Dynamic model description

- Classify individuals according to:
 - Epidemiological status: susceptible (S), latent (E), infectious (I), recovered (R), vaccinated (V).
 - Age: 0-4, 5-9, 10-19, 20-29, 30-39, 40-59, 60+
- Age-dependence: probability of becoming infected, transmitting infection, developing jaundice, being vaccinated, etc.
- Calibrated using data on case reports, seroprevalence, clinical literature, demographics, vaccine coverage.
Dynamic model description

V = Vaccinated
S = Susceptible
E = Infected but not yet infectious
I = Infectious
R = Recovered

Aging
Vaccination
Waning immunity
Death
Infection (travel)
Infection (domestic)
Becomes infectious
Recovery/Death
Dynamic Model Output

![Graph showing the proportion of susceptible, recovered, vaccinated, exposed, and infectious individuals over time. The x-axis represents years from 2010 to 2080, and the y-axis represents the proportion from 0 to 0.8. Different line styles and colors represent different statuses: black for susceptible, red for recovered, green for vaccinated, purple for exposed, and blue for infectious.](image-url)
Summary of Methodology

- Dynamic model
- Costing data, Utilities estimates
- Cases & deaths

Cases & Deaths, infection costs, vaccination costs, net benefits, costs per QALY gained

Probabilistic uncertainty analysis applied
Univariate sensitivity analysis applied
Summary of Other Assumptions

- Discounting: 5% on costs and QALYs
- Waning immunity: 3.2/1.7/0.6% per year (Jacobs et al Inf. Control & Hosp. Epi. 2004;25:563)
- 80 years of vaccination: 2006-2085
- Compliance: 94% (child, school-based), 80% (child, clinic-based), 25% (adult, clinic-based)
- Targeted vaccination is phased out.
- Utility during acute HAV infection is taken to be 0.6 (Chodick et al. 2002, Arguedas et al. 2002).
- Transmission rates, current policy costs and coverage are constant after 2006.
Costs, cases, deaths (average discounted values)

Red = ministry, black = society

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Targeted Vaccine Costs, millions $</th>
<th>Universal Vaccine Costs, millions $</th>
<th>Infection Costs, millions $</th>
<th>Total Costs, millions $</th>
<th>Marginal Costs, millions $</th>
<th>Marginal QALYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>7.44 ± 0.65</td>
<td>0</td>
<td>0.45 ± 0.02</td>
<td>7.89 ± 0.65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>19.48 ± 1.77</td>
<td>0</td>
<td>0.93 ± 0.05</td>
<td>20.41 ± 1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4+9</td>
<td>5.94 ± 0.54</td>
<td>3.41 ± 0.34</td>
<td>0.24 ± 0.02</td>
<td>9.59 ± 0.64</td>
<td>1.69 ± 0.36</td>
<td>9.70 ± 0.59</td>
</tr>
<tr>
<td></td>
<td>15.71 ± 1.47</td>
<td>3.44 ± 0.34</td>
<td>0.52 ± 0.04</td>
<td>19.67 ± 1.51</td>
<td>-0.74 ± 0.45</td>
<td></td>
</tr>
<tr>
<td>9+9</td>
<td>5.94 ± 0.54</td>
<td>1.59 ± 0.16</td>
<td>0.36 ± 0.03</td>
<td>7.88 ± 0.56</td>
<td>-0.01 ± 0.18</td>
<td>3.69 ± 0.93</td>
</tr>
<tr>
<td></td>
<td>15.70 ± 1.46</td>
<td>1.64 ± 0.17</td>
<td>0.77 ± 0.06</td>
<td>18.11 ± 1.48</td>
<td>-2.28 ± 0.33</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Reported Cases</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>846</td>
<td>4.2</td>
</tr>
<tr>
<td>4+9</td>
<td>379</td>
<td>2.5</td>
</tr>
<tr>
<td>9+9</td>
<td>606</td>
<td>3.7</td>
</tr>
</tbody>
</table>

For 1980-1994 population values
Cost-utility results

Ministry perspective

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Costs per QALY Gained, $</th>
<th>Net Benefits, health units</th>
<th>Net Benefits, millions $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>N/a</td>
<td>N/a</td>
<td>N/a</td>
</tr>
<tr>
<td>9+9</td>
<td>- $46,000 ± $790,000</td>
<td>3.8 ± 3.0</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>4+9</td>
<td>$175,000 ± $36,000</td>
<td>-24.2 ± 7.1</td>
<td>-1.2 ± 0.4</td>
</tr>
</tbody>
</table>

Society perspective

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Costs per QALY Gained, $</th>
<th>Net Benefits, health units</th>
<th>Net Benefits, millions $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>N/a</td>
<td>N/a</td>
<td>N/a</td>
</tr>
<tr>
<td>9+9</td>
<td>- $835,000 ± $4,333,000</td>
<td>49.4 ± 6.3</td>
<td>2.5 ± 0.3</td>
</tr>
<tr>
<td>4+9</td>
<td>- $77,000 ± $48,000</td>
<td>24.5 ± 9.0</td>
<td>1.2 ± 0.5</td>
</tr>
</tbody>
</table>

Threshold for net benefits = $50,000
Special Case: ceasing targeted vaccination altogether in 2006

Ministry perspective

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Costs per QALY Gained, $</th>
<th>Net Benefits, health units</th>
<th>Net Benefits, millions $</th>
</tr>
</thead>
<tbody>
<tr>
<td>9+9</td>
<td>53,600 ± 3,500</td>
<td>-1.5 ± 1.5</td>
<td>-0.1 ± 0.1</td>
</tr>
<tr>
<td>4+9</td>
<td>65,500 ± 8,600</td>
<td>-12.4 ± 6.8</td>
<td>-0.6 ± 0.3</td>
</tr>
</tbody>
</table>

Society perspective

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Costs per QALY Gained, $</th>
<th>Net Benefits, health units</th>
<th>Net Benefits, millions $</th>
</tr>
</thead>
<tbody>
<tr>
<td>9+9</td>
<td>34,700 ± 3,500</td>
<td>6.6 ±1.8</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>4+9</td>
<td>44,600 ± 8,700</td>
<td>4.4 ± 7.0</td>
<td>0.2 ± 0.4</td>
</tr>
</tbody>
</table>
Special Case: comparison with cohort model predictions

Ministry perspective, dynamic model

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Costs per QALY Gained, $</th>
<th>Net Benefits, health units</th>
<th>Net Benefits, millions $</th>
</tr>
</thead>
<tbody>
<tr>
<td>9+9</td>
<td>-46,000 ± 790,000</td>
<td>3.8 ± 3.0</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>4+9</td>
<td>175,000 ± 36,000</td>
<td>-24.2 ± 7.1</td>
<td>-1.2 ± 0.4</td>
</tr>
</tbody>
</table>

Ministry perspective, cohort model

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Costs per QALY Gained, $</th>
<th>Net Benefits, health units</th>
<th>Net Benefits, millions $</th>
</tr>
</thead>
<tbody>
<tr>
<td>9+9</td>
<td>-67,000 ± 2,673,000</td>
<td>1.8 ± 3.3</td>
<td>0.1 ± 0.2</td>
</tr>
<tr>
<td>4+9</td>
<td>467,000 ± 99,000</td>
<td>-32.1 ± 7.1</td>
<td>-1.6 ± 0.4</td>
</tr>
</tbody>
</table>
We studied the sensitivity of model predictions to variations in parameters, for 9+9 strategy:

- rate of waning immunity (0% to 2% annual)
- change in travel transmission rate over time (decline to 50%, climb to 150%)
- under-reporting of symptomatic cases (1:1 to 1:3)
- HAV mortality rate (± 50%)
- Utility during acute HAV (± 50%)
- universal vaccination costs (± 50%)
- infection costs (± 50%)
- costs of current policy (-20%, +40%)
- efficacy of current policy in reducing incidence (1.7 to 3.3 per 100,000 per year with targeted alone)
Sensitivity Analysis

The “9+9” strategy is cost-effective from ministry perspective as long as:

- incremental cost of two doses of bivalent HA/HB vaccine versus two doses of monovalent HB vaccine is less than $21 (base case is $18).
- long-term reported incidence under the current strategy remains above 2.2/100,000/year (base case is 3.3/100,000/year).

Applies at a threshold of $50,000/QALY.
Conclusions

- Absolute QALY gains of implementing universal HA vaccination in Canada are small
 - 10-30 QALYs gained per year before discounting.
- However, a “9+9” strategy that replaces two doses of HB vaccine at age 9 with two doses of combined HA/HB vaccine appears to be economically attractive:
 - Cost-effective from ministry perspective, at $50,000/QALY threshold (positive net benefits).
 - Cost-saving from societal perspective.
- Using dynamic models instead of cohort models can make cost-effectiveness analyses of vaccination programmes more accurate.
Relevant publications

