

Miami, 30/11/2007

Hepatitis A: performance of the available vaccines

Koen Van Herck, MD, PhD Centre for the Evaluation of Vaccination Vaccine & Infectious Disease Institute University of Antwerp Belgium

Performance of hepatitis A vaccines: HEpatitis FLoridA

- Highly immunogenic
 - No non-response
 - Rapid seroconversion
 - Long-term antibody persistence
- Excellent safety profile
- Freedom to choose
 - Coadministration / combination vaccines
 - Flexible vaccination schedule
 - Interchangeability
- Long-lasting protection
 - Beyond antibody persistence (life-long)
 - Proven effectiveness, even post-exposure
- After single dose? How long protected?

Available vaccines (1)

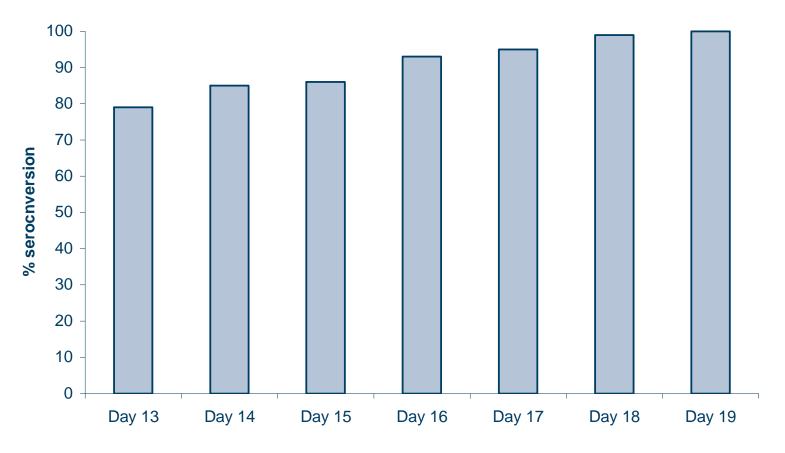
- Vaccines widely available
 - Avaxim (0 / 6-12 months)
 - GBM strain
 - Sanofi Pasteur, Lyon, France
 - Epaxal (0 / 6-12 months)
 - RG SB strain
 - Berna Biotech Ltd, Bern, Switzerland
 - Havrix (0 / 6-12 months)
 - HM 175 strain
 - GlaxoSmithKline Biologicals, Rixensart, Belgium
 - Vaqta (0 / 6-18 months)
 - CR326F strain
 - Merck & Co, West Point, PA, USA

Available vaccines (2)

- Vaccines with more limited distribution
 - Chinese live attenuated vaccine
 - H2 strain
 - Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
 - Vietnamese vaccine
 - Vaccine and Bio-product Company 1, Vietnam
 - Nothav
 - Chiron Behring GmbH, Italy
 - Locally produced vaccines in
 - Russia, Brazil, ...?

Combination vaccines

- Hepatitis A and B
 - Twinrix (0 / 1 / 6 months)
 - Ambirix (0 / 6 months)
 - GlaxoSmithKline Biologicals, Rixensart, Belgium
 - Chinese vaccine
- Hepatitis A and typhoid fever
 - Hepatyrix
 - GlaxoSmithKline Biologicals, Rixensart, Belgium
 - Viatim
 - Sanofi Pasteur, Lyon, France

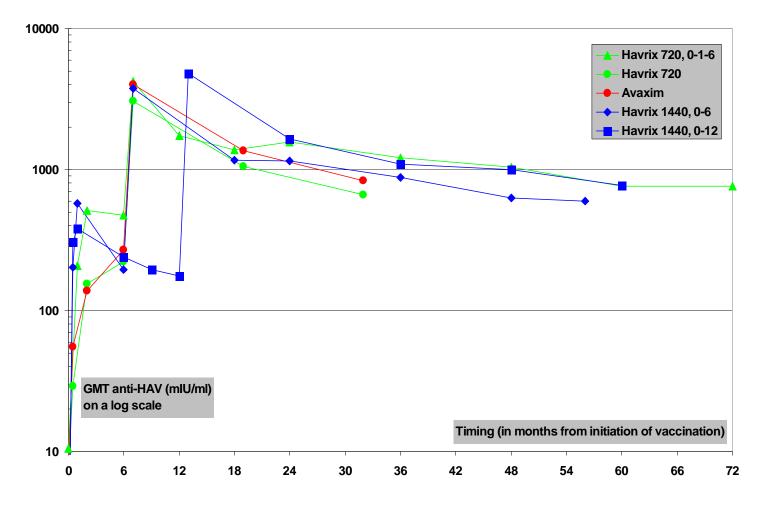

Immunogenicity (1)

- Highly immunogenic
 - No non-response (virtually)
 - Few cases reported
 - Rapid seroconversion
 - For all vaccines
 - Inactivated: 95-100% after 2-4 weeks
 - Live vaccine: 95% after 2-5 weeks
 - Allows immunization of travellers up to departure

Ambrosch, Infection 2004; Connor, Biodrugs 2003; Vidor, Eur J Clin Microbiol Infect 2004

Rapid seroconversion

Connor, Biodrugs 2003


Immunogenicity (2)

- Highly immunogenic
 - Long-term persistence of antibodies
 - Detectable antibodies: many years after completion of vaccination schedule
 - hardly any subjects lose their antibodies
 - » children: up to 11 years
 - » adults: up to 10 years, and still ongoing
 - also in unselected populations
 - » >1000 fully vaccinated travellers
 - » blood sample +10 years later
 - » 98% still had anti-HAV >10 IU/L

Bovier 2002; Fan 1998; Chan 1999; Hammitt (AASLD) 2007; Maiwald 1997; Mayorga (ICAAC) 2003; Rendi-Wagner, Vaccine 2006; Totos 1997; Van Herck 2000; Van Herck 2001; Wang 2007; Wiedermann 1997; Wiedermann 1998; Wiens 1996

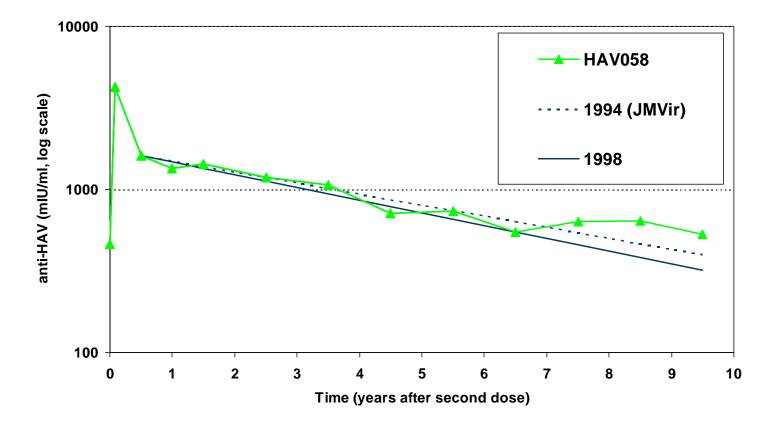
Long-term anti-HAV persistence Observed long-term results in adults

Hepatitis A Vaccine: Immunogenicity Through 11 Years

Age Group at Vaccination	Dose Schedule (Months)	Percent Anti-HAV > 20 mIU
Children Ages 3 to 6 yrs	0, 1, 2	91%
Children Ages 3 to 6 yrs	0, 1, 6	100%
Children Ages 3 to 6 yrs	0, 1, 12	100%
Adults	0, 1, 12	96%

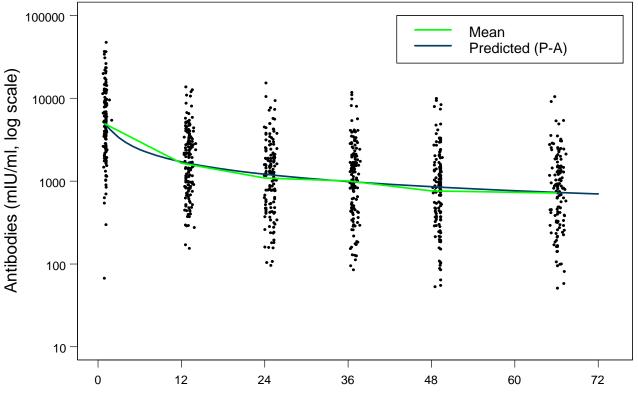
Hammitt (AASLD) 2007 - courtesy of B. McMahon

Immunogenicity (3)

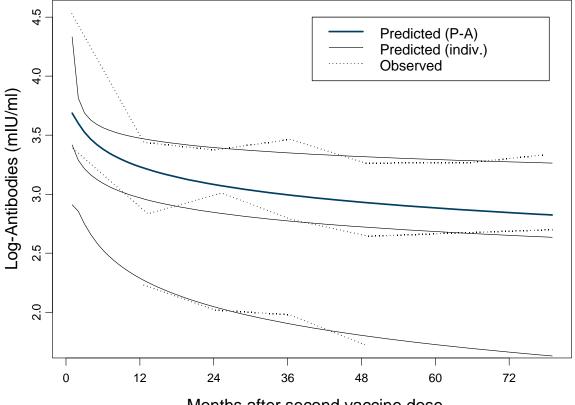

• Highly immunogenic

- Long-term persistence of antibodies
 - Detectable antibodies: many years after completion of vaccination schedule
 - hardly any subjects lose their antibodies
 - » children: up to 11 years
 - » adults: up to 10 years, and still ongoing
 - Also in unselected populations
- Log-linear extrapolation method (average persistence)
 - children: 14-25 years
 - adults: 20-25 years

Bovier 2002; Fan 1998; Chan 1999; Hammitt (AASLD) 2007; Maiwald 1997; Mayorga (ICAAC) 2003; Rendi-Wagner, Vaccine 2006; Totos 1997; Van Herck 2000; Van Herck 2001; Wang 2007; Wiedermann 1997; Wiedermann 1998; Wiens 1996


AB persistence: hepatitis A Linear extrapolation (1994-2001)

Van Damme et al, J Med Virol 1994


Hepatitis A: Linear mixed model Population-based

Months after second vaccine dose

Hepatitis A: Linear mixed model Individual based

Months after second vaccine dose

Hepatitis A: Linear mixed model Long-term estimates

• Individual predictions after 25 years

• a	inti-HAV	before	2nd	dose	%	neg.	at	Y25
-----	----------	--------	-----	------	---	------	----	-----

- < 20 IU/L < 12 %
 20-100 IU/L < 8 %
- 100-1000 IU/L < 2 %
- > 1000 IU/L < 1 %
- overall < 5 %
- Similar results with other vaccines

Bovier 2002; Bovier 2005; Pigeon 1999; Van Herck (ISVHLD) 2000

Immunogenicity (3)

- CAVE: 1st year of life (maternal ABs)
 - Reduced humoral immune response
 - BUT: adequate priming and immune memory
 - Robust anamnestic response to booster dose
 - Even up to 6 years post-vaccination

Fiore, PIDJ 2003; Kanra, Turk J Pediatr 2000; Kanra, PIDJ 2002; Letson, J Pediatr 2004; Lopez, Vaccine 2007; Piazza, Vaccine 1999; Troisi, Vaccine 1997; Usonis, Vaccine 2003; Vidor 2007

Safety and tolerability

- Excellent safety profile
 - Mild and transient local site reactions
 - children 20%, adults 50%
 - pain
 - swelling
 - redness
 - Epaxal compared to alum-adsorbed vaccines
 - 2-3 times lower rate of local reactions
 - General reactions
 - reported in <5% of vaccinees
 - fever, fatigue, diarrhoea, vomiting, headache

André, Expert Rev Vaccines 2002; Black, Vaccine 2004; Bovier, Vaccine 2005; WHO, WER 2000; Zuckerman, Adv Ther 1997

Freedom to choose

- Co-administration possible
 - Paediatric: DT(a)P; OPV/IPV; Hib; hepatitis B
 - Travellers: hepatitis B, polio, dT, typhoid fever, yellow fever, rabies, cholera, Jap. Encepalitis
- Combination vaccines (hepB, typhoid fever)
- Flexible vaccination schedule
 - 0 + 6-12 (6-18) months, and beyond
- Interchangeability
 - Not all combinations tested
 - Existing studies show similar results

Bovier, Vaccine 2005; Bryan, Vaccine 2001; Van Herck, Expert Rev Vaccines 2005; Vidor, Eur J Clin Microbiol Infect 2004

Long-lasting protection (1)

- CAVE:
 - Minimal protective level not defined
 - Studies in chimpanzees with passive immunisation
 - 10 IU/L: prevent viral shedding (but not infection)
 - Vaccine trials: different (in-house) ELISA tests
 - 10, 15, 20, 33 IU/L?
 - comparability of results?
 - Defining "protection"
 - Merriam-Webster: "the state of being protected"
 - » 1 a : to cover or shield from exposure, injury, damage, or destruction
 - Shielded from exposure?
 - Shielded from "injury"?

Purcell, Vaccine 1992

Protective efficacy (1)

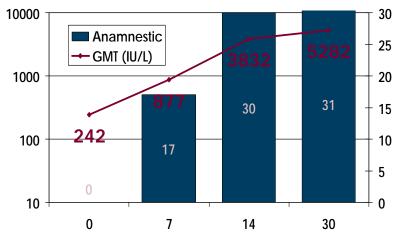
- Efficacy trials
 - Epaxal: 100%
 - Nicaragua, 274 children (1.5 6 yo)
 - Havrix: 95%
 - Thailand, >40,000 children (1-16 yo)
 - Vaqta: 100%
 - USA (Monroe), >1,000 children (2-16 yo)
 - Chinese live vaccine: 95%
- Also in post-exposure prophylaxis
 - Outbreak control

Innis, JAMA 1994; Perez, J Infect Dis 2003; Werzberger, NEJM 1992; Zhao 2000

Field effectiveness

- Well-demonstrated in a number of mass vaccination programmes
 - massive reduction in disease incidence
 - in targeted AND in other age groups
 - to what extent due to vaccination?
 - different settings
 - targeted age group, vaccination schedule, vaccine, coverage, ...
 - US, Israel, Australia, Italy, Spain
 - Argentina, Belarus, China, ...

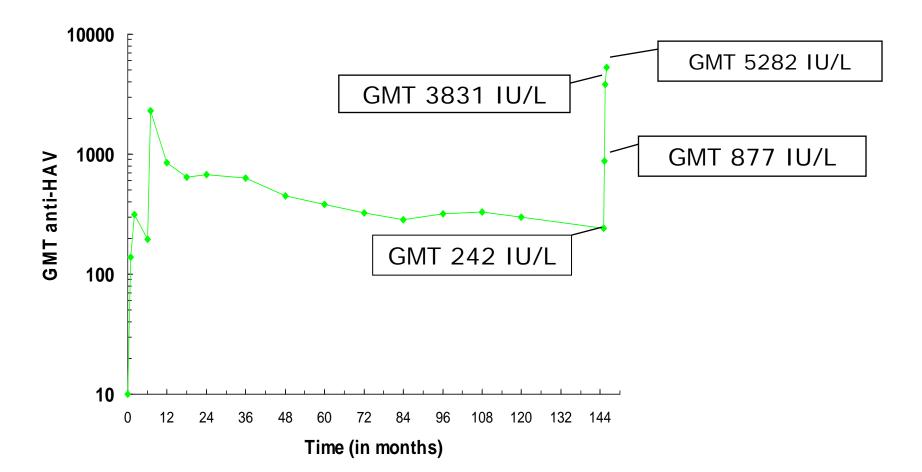
Dagan 2005; Lopalco 2001; Dominguez 2003; MacIntyre 2003; Van Damme 2005; Wasley 2005; Zhuang 2005


Long-lasting protection (2)

- Beyond persistence of antibodies
 - Direct evidence
 - Chimpanzees
 - Challenged with HAV after vaccination
 - » Protected, even without anti-HAV antibodies
 - » Antibodies are not an absolute requirement for protective immunity
 - Humans
 - In vitro tests for cellular-mediated immunity (EliSpot)
 - » memory B-cells producing IgG anti-HAV 2-3 years postvaccination
 - » T-cell immune memory: up to 6 years post-vaccination

Chen, 1996; Lemon, 1993; Leroux-Roels, 2000; Purcell, Vaccine 1992

Indirect evidence: booster study



- 12 years since Havrix 720 (0-1-6)
- Cohort (N=150) followed for 10 years
- Booster study: n=31
- Booster: Havrix 720
- Anamnestic response
 - titre at least x2 (or x4 if <100 IU/L at day 0)
- Day 0: 100% seropositive
- Fast, strong response within 2 weeks

Van Herck 2004

follow-up Month 145

HAV: consensus on boosters

- NO booster required if:
 - fully vaccinated
 - normal immune system
 - persistence of antibodies (observed + modelled)
 - persistence of immune memory
 - delayed 2nd dose excellent response, even after antibody loss
 - booster study 2002
 - rely on immune memory
 - except: immunocompromised (lack of data)
- Also for combination vaccines

Van Damme, Lancet 2003

HAV consensus Special patient groups

- Data available for patients with CLD, chronic HBV infection, chronic HCV infection, HIV
 - Generally comparable to lower seroconversion rates and lower antibody concentrations but protection against HAV infection can be achieved
 - Success of seroconversion in HIV-positive individuals was related to their CD4+ count
 - 2005 meta-analysis: 64% [52-75%] response rate
 - Further studies on persistence of antibodies needed before booster recommendations can be developed

Keeffe 1998; Lee 1997; Neilsen 1997; Shire 2005

After single dose: how long protected?

- Insufficient data, BUT good indications
 - Delayed second dose (up to 5-8 years)
 - Excellent anamnestic response to second dose
 - Not affected by the delay
 - Even after losing detectable antibodies
 - Single dose of live vaccine
 - Long-term persistence of antibodies and long-term effectiveness
- CAVE:
 - on the long run?
 - if vaccinated at young age?
 - in conditions of low endemicity?
 - no natural boosters

Beck 2003; Iwarson 2002; Iwarson 2004; Landry 2000; Orr 2006; Wang 2007; Williams 2003; Zhuang 2005

Conclusions: HEpatitis FLoridA

- Highly immunogenic
 - No non-response
 - Rapid seroconversion
 - Long-term antibody persistence
- Excellent safety profile
- Freedom to choose
 - Coadministration / combination vaccines
 - Flexible vaccination schedule
 - Interchangeability
- Long-lasting protection
 - Beyond antibody persistence (life-long)
 - Proven effectiveness, even post-exposure
- After single dose? How long protected?