Diagnostics for Control of Hepatitis A What do we Need and Why?

Harold S. Margolis, MD International Vaccine Institute Seoul, South Korea

- Role of Diagnostics in Vaccine Preventable Diseases
- Hepatitis A Diagnostics
- Specialized Assays for Hepatitis A
 - -Serologic
 - -Molecular

Some "Definitions"

- Diagnostics
 - -widely used
 - -commercially available
- Specialized Assays
 - Generally for research only
 - Not widely available
 - May be commercially available

Diagnostic Tests and Assays: Vaccine Preventable Diseases

Pre - Vaccine

Diagnosis of acute disease (epidemiology / disease burden)

Vaccine Assessment

- Detection of infection
- Assessment of vaccine response
- Vaccine Introduction
 - Effectiveness
 - Long-term effects

Events in Hepatitis A Virus Infection

Adapted from: J Med Virol 1988; 26:315-326; J Infect Dis 2000; 182:12-17

Diagnosis of Acute Disease

- Differential diagnosis of jaundice and acute febrile illness
- Clinical management
- Surveillance
 - Outbreak detection
 - Disease burden estimates
 - Post-introduction vaccine effectiveness
- Epidemiologic studies
- Clinical trials

IgM Anti-HAV

- An excellent <u>diagnostic</u> test among persons with symptoms suggestive of hepatitis
 - High sensitivity & specificity
 - High predictive values positive and negative
 - "Detuned" to improve specificity only positive 4-6 months after symptom onset
- Transiently positive following vaccination (8-20%) – usually not a diagnostic problem

IgM Anti-HAV

- The *downside* = not widely used in countries where hepatitis A is endemic
 - differential diagnosis of acute hepatitis
 - (IgM anti-HAV & IgM anti-HBc)
 - non-icteric syndromes that could be hepatitis A (e.g., febrile illness in children)
 - Relatively high cost
 - No rapid test formats

Assessment of Hepatitis A Vaccination

Short-term Vaccine Response (total anti-HAV)

- Clinical trials
- Epidemiologic studies
- Problems:
 - Diagnostic test = lower levels of detection
 - Diagnostic test must be modified, not generally applicable to vaccinated persons
 - Measures antibody to structural proteins (vaccine and wild-type infection)

Assessment of Hepatitis A Vaccination

Long-term

- Antibody persistence (total anti-HAV)
- Breakthrough infections
 - Clinically evident (IgM anti-HAV)
 - Inapparent problematic
 - Virus detection have to be lucky
 - Antibody to HAV non-structural proteins

Assessment of Hepatitis A Vaccination

- Antibody to non-structural (replication) antigens of HAV
 - Response to proteins produced during viral replication
 - Not present following vaccination with inactivated viral vaccines
 - Could identify subclinical infections in vaccinated population

Studies of Antibodies to HAV Non-Structural Proteins

CDC Group

Robertson BR, et al J Med Virol 176: 593 (1993) **NIH Group**

Stewart DR, et al JID 176: 593 (1997) Kabrane-Laziz Y, et al. Vaccine 19: 2878 (2001)

Antibodies to Non-Structural Proteins

- Proof of concept: antibodies can be detected
- Limitations = sensitivity
 - High viral replication = high rate of detection (>95%)
 - –Low viral replication (e.g., attenuated vaccine) = low rate of detection (~25%)
 - Poor detection of persons with low levels of viral replication (small sample sizes)
 - —Unknown identification of persons with breakthrough infections following vaccination

Summary Serologic Antibody Assays / Tests

Excellent diagnostic test – IgM anti-HAV -More widespread use Possible need for special assays -Total anti-HAV more sensitive -Antibody to non-structural proteins (anti-C3) more sensitive

Molecular Diagnostics

ses

Virus Detection

 Humans during infection
 Environmental samples

 Molecular epidemiology

 Transmission patterns
 Virus evolution

Events in Hepatitis A Virus Infection

Adapted from: J Med Virol 1988; 26:315-326; J Infect Dis 2000; 182:12-17

Detection of HAV RNA in Serum

Time from symptom onset to blood draw

Days	Positive (%)	
<0	100	
0 -13	93.4	
14 -27	93.5	
28 - 41	63.3	

Not affected by source of infection, gender, race, or age

Source: J Infect Dis 2000; 182:12-17 and CDC unpublished data

Virus Detection in Environmental Samples Challenges

- Material often NOT same material implicated in outbreak
- Foods (e.g., berries, onions, shellfish)
 - Special extraction methods to release virus from food surfaces / matrices and large biomass
 - Concentration of extracts from large volumes
- Water and sewerage
 - Large volumes require concentration (e.g., membranes)

Multiplex for other enterically transmitted agents (e.g., noro and caliciviruses)

Virus Detection in Environmental Samples

Nucleic acid amplification

- Inhibitors from food components, or elution and concentration methods
- Detection of infectious virus
 - Immuno-capture RT-PCR
- –Amplification methods
 - Dependent on throughput needs and lab capacity (e.g., real time, quantitative, RT-PCR)

Regions Commonly Used to Amplify Hepatitis A Virus

From: Clinical Microbiology Reviews (2006) 19: 63

Genetic Relatedness of HAV

5-15

- Relatively low degree of nucleotide variation across genome regions
- 7 genotypes

– 4 human

- 3 simian
- Enough variation to determine relatedness of isolates using relatively short sequence fragments

Uses of Molecular Epidemiology

Sources of Virus Transmission

 Food / water / other environmental
 Risk factors – MSM, IDU
 Blood / Blood Products

 Transmission Patterns within Populations
 Monitoring Vaccine Effectiveness

Sources of Virus Transmission

Food / water / other environmental Simultaneous outbreaks in multiple locations Multiple food sources – e.g., berries, green onions, shellfish

Risk factors

- -Outbreaks in IDUs
- Disease transmission patterns among MSM
- Transmission Patterns after Vaccination

Multistate Outbreak of Hepatitis A Associated with Frozen Strawberries, 1997

Lessons Learned

- Could identify small number of cases using markers of genetic relatedness
- Required high-throughput molecular diagnostics
- Required large data base of genetic sequences for general population
- Required previously agreed upon sequenced regions for comparison

Hutin et al. NEJM 1999; 340:595-602

Relatedness of HAV from Cases who Ate Frozen Strawberries from Same Processor

State	# Cases	# Sera available	# with outbreak sequence
Michigan	198	118	118
Tennessee	2	1	0
Wisconsin	5	5	5
Louisiana*	4	2	2
Maine	29	10	8
Arizona	10	7	7
USA	_	98	4

*Commercial product

Multi-state Outbreak of Hepatitis A Associated with Frozen Strawberries, United States, 1997

Sentinel Counties Tacoma, Portland, Birmingham

Michigan (118) Louisiana (2) Maine (8) Arizona (7) Wisconsin (5)

Hutin et al. NEJM 1999; 340:595-602

Summary

- Have powerful tools for molecular diagnostics
- Genetic markers (molecular epidemiology) has increased our knowledge of HAV transmission
- Must continue sharing information about strains
- We have tools to show elimination of HAV transmission in immunized populations

Vaccines don't Prevent Disease Vaccination Prevents Disease

Dedication

Omana Nainan

Betty Robertson

