
Guoliang Xia, Yuri E. Khudyakov, Gregory Armstrong, Ian Williams, Philip Spradling, Omana V. Nainan, Beth Bell, and Harold S. Margolis

Division of Viral Hepatitis, NCHHSTP
Centers for Disease Control and Prevention, Atlanta, GA 30333

"The findings and conclusions in this presentation have not been formally disseminated by the Centers for Disease Control and Prevention and should not be construed to represent any agency determination or policy."
Objectives of Molecular Surveillance

- Determine the genetic characteristics of HAV circulating in the United States
- Determine the genetic relatedness of HAV isolates among cases with a recognized risk factor for infection
- Among persons with an unknown source of infection, use genetic relatedness of HAV isolates to identify possible source or risk factor for infection
- Provide phylogenetic background of HAV for outbreak investigation and molecular tracking of hepatitis A
Methods - Sentinel Counties Study of Acute Viral Hepatitis

- **Population under surveillance**

 (n = 4.5 million)

- **Clinical information:**
 - Symptoms or signs of viral hepatitis; ALT/AST and bilirubin; other causes of liver injury

- **Epidemiological interview:**

 Demographic data; Missed opportunities for prevention; risk factor history

- **SeroLogic and Molecular testing at CDC**

Conducted by CDC from 1982-2006.

Patients with acute viral hepatitis reported to 6 county health departments through stimulated passive surveillance:

- Pierce (PRC) WA, 1982
- Multnomah (MLT) OR, 1996
- Contra Costa (CCA) CA, 1996-97
- Denver (DEN) CO, 1982
- Jefferson (JFA) AL, 1982
- Pinellas (PNF) FL, 1982
Genetic Relatedness of HAV Isolates in the Sentinel Counties

- A total of 1234 hepatitis A cases shared 407 UNSPs (unique nucleotide sequences pattern)
- Predominant genotype IA (n=1196 or 97%)
- 77% (n=946) of isolates found more than once
 - 119 UNSPs
 - 61% cases (N=756) share 10% (n=40) dominant UNSPs (≥5 cases)
- Only 23% (n=288) of HAV isolates were unique
Persistence of HAV Isolates in the Sentinel Counties (n=1,234)

Year of Sequences First Identified
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006

Surveillance Year (onset date)
Three major and a few minor IA clusters identified

407 UNSPs, 1996-2006
VP1-P2B Region, 315 bp in Length

5.0% Nucleotide Variation
Association between Risk Factors and Phylogenetic Clusters

(N=810 Cases with completed epidemiologic data)

<table>
<thead>
<tr>
<th>High Risk Factor</th>
<th>1A Cluster 1</th>
<th>1A Cluster 2</th>
<th>1A Cluster 3</th>
<th>Other IA Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intl-Travel (n=99)</td>
<td>67(67.7)*</td>
<td>11(11.1)</td>
<td>12(12.1)</td>
<td>9(9.1)</td>
</tr>
<tr>
<td>IDU (n=68)</td>
<td>7(10.3)</td>
<td>47(69.1)*</td>
<td>10(14.7)</td>
<td>4(5.9)</td>
</tr>
<tr>
<td>MSM (n=165)</td>
<td>12(7.3)</td>
<td>13(7.9)</td>
<td>137(83.0)*</td>
<td>3(1.8)</td>
</tr>
<tr>
<td>Total (N=810)</td>
<td>261</td>
<td>234</td>
<td>276</td>
<td>39</td>
</tr>
</tbody>
</table>

* Significantly higher proportion (row) than others
Overall, 39.9% cases belong to cluster US-IA1; 25.5% US-IA2, 29.7% US-IA3, and 5.0% others.

Distribution of HAV infected sub-populations varies by county over time:
- US-1A2 strains were particularly dominant in Multnomah before 2002, and US-1A3 strains in Denver before 2001.
- Very few US-IA2 cases in Pinellas and US-IA3 cases in Pierce in the 11 years.
Epidemiological Characteristics of 114 Cases Sharing the Same UNSP
(Sequence ID = SC9)

- Majority of cases occurred in 1997; the unique isolate circulated for 5 years (1996-2000);
- Predominantly male (92.1%);
- 97% of cases occurred in Denver and Multnomah;
- 76% white, and 24% others;
- 61% of cases reported male homosexual activity (MSM), and 6% of cases reported IDU activity.
Summary

Molecular surveillance and genetic relatedness analysis provide insights into the distribution of distinct HAV variants and predominant specific transmission routes

- A relatively limited number of HAV strains account for the majority of cases before 2002
- Certain strains seem to be associated with certain risk factors
- Identical sequence pattern may suggest epidemiological relatedness
- HAV phylogenetic patterns varies by the county over time
Acknowledgments

Chong-Gee Teo, MD, PhD
Steve Wiersma, MD
Anthony E. Fiore, MD, MPH
Wendi L. Kuhnert, PhD
Jinfeng Li, MD
Kathleen Gallagher, PhD
Annemarie Wasley, ScD
Xiaohua Han, MD
Xinglu Zhang, MD
Gilberto Vaughan, PhD
Lilia Ganova-Raeva, PhD

Division of Viral Hepatitis, NCHHSTP, CDC