Cost-effectiveness analysis of hepatitis A vaccination in Canada using a dynamic model

UNIVERSITY SGUELPH Andrea Anonychuk, MSc Chris Bauch, PhD Maggie Hong Chen, MSc Bernard Duval, MD, MPH Vladimir Gilca, MD Murray Krahn, MD, MSc Ba' Pham, MSc Arni S.R. Srinivasa Rao, PhD Andrea C. Tricco, MSc

Global Hepatitis A Meeting, Miami, Florida, 1 December 2007

HAV epidemiology in Canada

- Hepatitis A virus (HAV) incidence is relatively low.
- Spread is primarily person-to-person (fecaloral route) with very rare foodborne outbreaks.

Vaccine licensed for use in Canada in 1994.
Average incidence 1980-1994: 6.3/100,000/yr
Average incidence 1995-2003: 3.8/100,000/yr
Risk factors include MSM, IDUs, <u>travelers</u>.
Vaccination in Canada is targeted toward high-risk groups.

Hepatitis A epidemiology

Average Canadian incidence 1980-94: 6.3/100,000/yr
Average Canadian incidence 1995-03: 3.8/100,000/yr

Source: Health Canada CDC

Hepatitis A epidemiology

				ſ	10	20	30	40	50	60	70	80	90	100
Author	Population	Age	n			_		_	_				_	_
	Age < 20				1			1	-	1	1	1	1	1
C r ewe 1983	Children, Halifax, 1981-2	0-9	2 9	*	:		:	:	:	:	:	:	:	:
Payment 1991	French- Canadian, Montreal, 1988-9	9-19	199	٠	-	- 1	1		-				-	
Dunal 2004	Canadian children, Canada, 2003	8-13	8 9	. *										
Levy 2001	University students, Toronto, 1997	18-19			• :	1	1	:	:	:	:	:	:	:
Ochnio 1997	G6 students, Vancouver, 1995-6	10-12	- 17	1	۲.									
Crewe 1983	Children, Halifax, 1981-2	10-16	•		•	-			-					
									:					
	Age 20 · 29			3	-	-		÷	÷	-	÷	-	÷	
Ochnio 2004	Young a dults, Vancouver, 2003	20-24	8	. *	• .									
Levy 2001	University students, Toronto, 1997	20-24	3 0	Ξ	•	-		÷	÷	÷	÷	÷	÷	÷
Ochnio 2004	Young a dults, Vancouver, 2003	25-29	9		 -	• .								
Payment 1991	French- Canadian, Montreal, 1988-9	20-29	1	Ξ		• :		÷	÷	÷	÷	÷	÷	:
Levy 2001	University students, Toronto , 1997	25-29	3	-	+	•								
McFarlane, 1980	Blood donors, runal NS, 1980	16-26	40	Ξ	+	- :		÷	÷	÷	÷	÷	÷	÷
	A 00 00			:	:	:		:	:	:	:	:	:	:
	Ade 20 - 28			:	_ :	:	:	1	:	:	:	:	:	:
Uchnio 2004	Young adults, Vancouver, 2003	30-34	11	:	1	.:	:	-		:	:	:	:	:
Levy 2001	University students, Toronto, 1997	30-34	7.		•		:	:		:	:	:	:	:
Uchnio 2004	Young a dults, Van couver, 2003	35-39	110			•	.:	:		:	:	:	:	:
Payment 1991	French- Canadian, Montreal, 1988-9	30-39	94	-	E.				:		:	:	:	:
	Ane 40 - 49			÷		:	:	:	:			:	:	:
Payment 1991	French, Canadian Montreal 1988-9	40.49	107	-			:		-	_:		:	:	:
1 Bymenic 1001		10-10	101	Ξ	÷			÷	-	÷		E.	÷	÷
	Age > 50			•	•	-			•	•	•	V.	•	•
McFarlane 1980	Blood donors, rural NS, 1980	51-65	167	Ξ	÷	3			÷-	÷	-		÷	÷
Payment 1991	French- Canadian, Montreal, 1988-9	50-59	81	-		-	•		<u> </u>	-				
Payment 1991	French- Canadian, Montreal, 1988-9	60-79	89	Ξ	÷	Ξ	-	÷		1	- i -		_; `	÷
					1	-	1	1	-			I		
				0	10	20	30	40	50	60	70	80	90	100
								Sera	heve	ieno	e (%)	5		

Source: Pham et al 2005

Seroprevalence

Age

Research Rationale and Approach

The cost-effectiveness and health outcomes of universal vaccination <u>relative to targeted</u> <u>vaccination, in a low incidence country</u>, are not currently known.

Research Questions:

- What are the expected health outcomes under universal hepatitis A vaccination in Canada?
- Which universal vaccination schedules are the most cost-effective?

We carried out a cost-utility analysis comparing universal vaccination to continuing the targeted policy.

Cost-utility methodology Assesses value for money. Cost-effectiveness ratio: increase in costs / gain in health units Net Health Benefits, in health units: (gain in health) - (increase in costs)/lambda Net Health Benefits, in monetary units: lambda*(gain in health) - (increase in costs)

Lambda = 50,000/QALY

Cost-utility methodology Costs measured in 2005 Canadian dollars. Both payer and societal perspectives used Payer = costs to Ministry of Health Societal = MOH costs + time costs + private sector costs. Health measured in QALYs = Quality Adjusted Life Years.

QALY and Utilities

- Health has dimensions of <u>quality</u> and <u>quantity</u>
- Utility is
 - Used to weight length of life;
 - A measure of patient preference for standardized health states;
 - Measured on a 0 to 1 scale.
- Example:
 - Life expectancy of 5 years, utility of 0.5 means 2.5 QALYs are accumulated.

Methods for collecting costing data

A systematic review of data on Hepatitis A outcomes and costs was performed.
Canadian data were used whenever possible
Expert opinion and consensus used if no data available.

Vaccination Costs

Costs of vaccination from the ministry perspective included: Cost of vaccine (varied depending on strategy) Cost of administration (ditto) Cost of adverse events Societal costs included Time costs due to getting vaccinated Private sector vaccination Both proposed and current strategies were costed in this way.

Infection Costs

Costs of infection from the ministry perspective included:

- Physician visit
- Outpatient clinic visits
- Hospitalization
- Diagnostic testing
- Liver transplants
- Public health interventions

Additional infection costs from the societal perspective included:

 Time costs (lost time at work due to acute infection and convalescence)

Did <u>not</u> include home care or long-term care costs.

Summary of strategies considered, and their costs

Strategy	Description	Cost per person vaccinated
Current policy	High-risk groups only	Ministry: \$ 81 Society: \$ 212
4+9	One dose at age 4 in a clinic with other scheduled vaccines. One dose at age 9 in a school setting by replacing a single HB vaccine dose with a combined HA/HB vaccine dose. Current policy is phased out in unvaccinated cohorts.	Ministry: \$ 42.57 Society: \$ 43.17
9+9	Two doses at age 9 in a school setting by replacing HB vaccine with combined HA/HB vaccine. Current policy is phased out in unvaccinated cohorts.	Ministry: \$ 18.12 Society: \$ 18.72

Summary of infection costs

Age Class	Direct Costs (ministry)	Time Costs	Direct + time costs (society)
0-4	\$ 1,235	\$ 598	\$ 1,833
5-9	\$ 1,235	\$ 665	\$ 1,900
10-19	\$ 1,140	\$ 729	\$ 1,869
20-29	\$ 1,163	\$ 569	\$ 1,732
30-39	\$ 1,537	\$ 1,446	\$ 2,983
40-59	\$ 1,923	\$ 4,341	\$ 6,264
60+	\$ 1,556	\$ 2,080	\$ 3,636

Need for dynamic model

We also need to estimate how many cases and deaths would be averted by universal vaccination.

Conventional analyses use <u>cohort models</u> which cannot capture herd immunity effects of vaccination.

Instead we use <u>dynamic models</u> which capture herd immunity by modelling transmission mechanisms via computer simulation.

Dynamic model description

Classify individuals according to:

- Epidemiological status: susceptible (S), latent (E), infectious (I), recovered (R), vaccinated (V).
- Age: 0-4, 5-9, 10-19, 20-29, 30-39, 40-59, 60+
- Age-dependence: probability of becoming infected, transmitting infection, developing jaundice, being vaccinated, etc.
- Calibrated using data on case reports, seroprevalence, clinical literature, demographics, vaccine coverage.

Dynamic Model Output

Summary of Methodology

Dynamic model

Cases & Deaths, infection costs, vaccination costs, net benefits, costs per QALY gained

Costing data, Utilities estimates

Probabilistic uncertainty analysis applied Univariate sensitivity analysis applied

Summary of Other Assumptions

- Under-reporting of symptomatic cases: 1:1.5 (Mutsch et al CID 2006:42, Alter et al.Am J Epi 1987;125:133)
- Discounting: 5% on costs and QALYs
- Waning immunity: 3.2/1.7/0.6% per year (Jacobs et al Inf. Control & Hosp. Epi. 2004;25:563)
- Efficacy: 97/100/100% (Innis et al, JAMA 1994;271, Werzberger et al, NEJM 1992;327:453)
- 80 years of vaccination: 2006-2085
- Compliance: 94% (child, school-based), 80% (child, clinic-based), 25% (adult, clinic-based)
- Targeted vaccination is phased out.
- Utility during acute HAV infection is taken to be 0.6 (Chodick et al. 2002, Arguedas et al. 2002).
- Transmission rates, current policy costs and coverage are constant after 2006.

Costs, cases, deaths (average discounted values)

Red = ministry, black = society

<u>Strategy</u>	<u>Targeted</u> <u>Vaccine</u> <u>Costs,</u> <u>millions \$</u>	<u>Universal</u> <u>Vaccine</u> <u>Costs,</u> millions \$	<u>Infection</u> <u>Costs,</u> millions \$	<u>Total</u> <u>Costs,</u> millions \$	<u>Marginal</u> <u>Costs,</u> millions \$	<u>Marginal</u> QALYS
Current	$\begin{array}{r} \textbf{7.44} \ \pm \textbf{0.65} \\ \textbf{19.48} \pm \textbf{1.77} \end{array}$	0 0	$\begin{array}{c} \textbf{0.45} \pm \textbf{0.02} \\ \textbf{0.93} \pm \textbf{0.05} \end{array}$	$\begin{array}{c} \textbf{7.89} \pm \textbf{0.65} \\ \textbf{20.41} \pm \textbf{1.77} \end{array}$	0	0
4+9	5.94 ± 0.54 15.71 ± 1.47	3.41 ± 0.34 3.44 ± 0.34	$0.24 \pm 0.02 \\ 0.52 \pm 0.04$	<mark>9.59 ± 0.64</mark> 19.67 ± 1.51	$\frac{1.69 \pm 0.36}{-0.74 \pm 0.45}$	9.70 ± 0.59
9+9	$5.94 \pm 0.54 \\ 15.70 \pm 1.46$	$\frac{1.59 \pm 0.16}{1.64 \pm 0.17}$	$\begin{array}{c} \textbf{0.36} \pm \textbf{0.03} \\ \textbf{0.77} \pm \textbf{0.06} \end{array}$	$7.88 \pm 0.56 \\18.11 \pm 1.48$	$-0.01 \pm 0.18 \\ -2.28 \pm 0.33$	3.69 ± 0.93
	<u>Strategy</u>	<u>Report</u>	ted Cases	Deaths	For 198	80-1994
	Current	8	846	4.2	populat values	710n

2.5

3.7

379

606

4+9

9+9

Cost-utility results

Ministry perspective

<u>Strategy</u>	<u>Costs per QALY Gained, \$</u>	<u>Net Benefits,</u> <u>health units</u>	<u>Net Benefits,</u> <u>millions \$</u>		
Current	N/a	N/a	N/a		
9+9	- \$46,000 ± \$ 790,000	3.8 ± 3.0	$\boldsymbol{0.2\pm0.2}$		
4+9	\$ 175,000 ± \$ 36,000	-24.2 ± 7.1	-1.2 ± 0.4		
Society perspective					
<u>Strategy</u>	<u>Costs per QALY Gained, \$</u>	<u>Net Benefits,</u> <u>health units</u>	<u>Net Benefits,</u> <u>millions \$</u>		
Current	N/a	N/a	N/a		
9+9	- \$ 835,000 ± \$4,333,000	49.4 ± 6.3	2.5 ± 0.3		
4+9	- $77000 \pm 48,000$	$\textbf{24.5} \pm \textbf{9.0}$	1.2 ± 0.5		

Threshold for net benefits = \$50,000

Special Case: ceasing targeted vaccination altogether in 2006

Ministry perspective

Strategy	Costs per QALY Gained, \$	Net Benefits, health units	Net Benefits, millions \$
9+9	53,600 ± 3,500	-1.5 ± 1.5	$\textbf{-0.1} \pm \textbf{0.1}$
4+9	65,500 ± 8,600	-12.4 ± 6.8	-0.6 ± 0.3

Society perspective

Strategy	Costs per QALY Gained, \$	Net Benefits, health units	Net Benefits, millions \$
9+9	$34,700 \pm 3,500$	6.6 ±1.8	$\textbf{0.3} \pm \textbf{0.1}$
4 + 9	$44,\!600\pm 8,\!700$	$\textbf{4.4} \pm \textbf{7.0}$	0.2 ± 0.4

Special Case: comparison with cohort model predictions

Ministry perspective, dynamic model

Strategy	Costs per QALY Gained, \$	Net Benefits, health units	Net Benefits, millions \$
9+9	- 46,000 ± 790,000	$\textbf{3.8} \pm \textbf{3.0}$	$\boldsymbol{0.2\pm0.2}$
4+9	175,000 ± 36,000	$\textbf{-24.2} \pm \textbf{7.1}$	-1.2 ± 0.4

Ministry perspective, cohort model

Strategy	Costs per QALY Gained, \$	Net Benefits, health units	Net Benefits, millions \$
9+9	$-67,000 \pm 2,673,000$	1.8 ± 3.3	$\textbf{0.1} \pm \textbf{0.2}$
4 + 9	467,000 ± 99,000	-32.1 ± 7.1	-1.6 ± 0.4

Sensitivity Analysis

We studied the sensitivity of model predictions to variations in parameters, for 9+9 strategy:

- rate of waning immunity (0% to 2% annual)
- change in travel transmission rate over time (decline to 50%, climb to 150%)
- under-reporting of symptomatic cases (1:1 to 1:3)
- HAV mortality rate (± 50%)
- Utility during acute HAV (± 50%)
- universal vaccination costs (± 50%)
- infection costs (\pm 50%)
- costs of current policy (-20%,+40%)
- efficacy of current policy in reducing incidence (1.7 to 3.3 per 100,000 per year with targeted alone)

Sensitivity Analysis

- The "9+9" strategy is cost-effective from ministry perspective as long as:
 - incremental cost of two doses of bivalent HA/HB vaccine versus two doses of monovalent HB vaccine is less than \$21 (base case is \$18).

long-term reported incidence under the current strategy remains above 2.2/100,000/year (base case is 3.3/100,000/year).

Applies at a threshold of \$50,000/QALY.

Conclusions

Absolute QALY gains of implementing universal HA vaccination in Canada are small

 10-30 QALYs gained per year before discounting.
 However, a "9+9" strategy that replaces two doses of HB vaccine at age 9 with two doses of combined HA/HB vaccine appears to be economically attractive:

 Cost-effective from ministry perspective, at \$50,000/QALY threshold (positive net benefits).

Cost-saving from societal perspective.

 Using dynamic models instead of cohort models can make cost-effectiveness analyses of vaccination programmes more accurate.

Relevant publications

- C.T. Bauch, A.M. Anonychuk, B.Z. Pham, V. Gilca, B. Duval, M.D. Krahn. 'Cost-utility of universal hepatitis A vaccination in Canada'. *Vaccine*, in press.
- R. Amariei, A.R. Willms, C.T. Bauch. 'The US and Canada as a coupled epidemiological system: an example from hepatitis A'. *BMC Infectious Diseases*, accepted subject to revision.
- A.M. Anonychuk, A.C. Tricco, C.T. Bauch, B. Pham, V. Gilca, B. Duval, A. John-Baptiste, G. Woo and M. Krahn. 'Cost Effectiveness Analyses of Hepatitis A Vaccine: A Systematic Review to Explore the Effect of Methodological Quality on the Economic Attractiveness of Vaccination Strategies', *Pharmacoeconomics*, in press.
- C.T. Bauch, A.S.R.S Rao, B. Pham, M Krahn, V. Gilca, B. Duval, M.H. Chen, A Tricco (2007). 'A dynamic model for assessing universal Hepatitis A vaccination in Canada' *Vaccine* 25:1719-1726.
- A.S.R.S. Rao, B. Pham, M. Chen, A. Tricco, V. Gilca, B. Duval, M. Krahn, C.T. Bauch (2006). 'Cohort effects in epidemic models: an example from Hepatitis A'. *BMC Infectious Diseases* 6: 174.